Lecture 5, 10/08/12

William Holmes

Matrix Algebra

- Matrix / matrix multiplication
- Matrix / number multiplication
- Matrix / matrix addition and subtraction.
- Matrix division (maybe on Wed.)

Matrix Multiplication Continued

- Let A be $m_1 \times n_1$ and B be $m_2 \times n_2$.
 - Then $A \cdot B$ only makes sense if $n_1 = m_2$.
 - The result is a matrix with dimensions m₁
 x n₂

Matrix Multiplication

 $A \cdot B = \begin{bmatrix} \mathsf{RI} * \mathsf{CI} & \mathsf{RI} * \mathsf{C2} \\ \mathsf{R2} * \mathsf{CI} & \mathsf{R2} * \mathsf{C2} \\ \mathsf{R3} * \mathsf{CI} & \mathsf{R3} * \mathsf{C2} \end{bmatrix}$

Matrix Multiplication

$$A \cdot B = \begin{array}{c} 2 \cdot 1 + 2 \cdot (-3) + (-1) \cdot (-1) & \text{RI * C2} \\ \text{R2 * CI} & \text{R2 * C2} \\ \text{R3 * CI} & \text{R3 * C2} \end{array}$$

Matrix Multiplication

• Be careful. Matrix multiplication does not commute.

 $A \cdot B \neq B \cdot A$

Matrix / Vector Formulation of a System

Notation and Conventions

$$A \cdot \vec{x} = \vec{b}$$

- A is referred to as the coefficient matrix.
- $\vec{\Box}$ is a notation indicating a vector
- \vec{x} is called the vector of unknowns
- \vec{b} is called the constant vector

Matrix Algebra Continued

Matrix \ Number Multiplication

$$\# \cdot \begin{bmatrix} 2 & 1 & -1 \\ 0 & -2 & 3 \\ 1 & 0 & 5 \end{bmatrix} = \begin{bmatrix} \# \cdot 2 & \# \cdot 1 & \# \cdot -1 \\ \# \cdot 0 & \# \cdot -2 & \# \cdot 3 \\ \# \cdot 1 & \# \cdot 0 & \# \cdot 5 \end{bmatrix}$$

- Exactly what you would think it is.
 - No restriction on dimension of matrix.

Example

$$12 \cdot \begin{bmatrix} 2 & 1 & -1 \\ 0 & -2 & 3 \\ 1 & 0 & 5 \end{bmatrix} = \begin{bmatrix} 12 \cdot 2 & 12 \cdot 1 & 12 \cdot -1 \\ 12 \cdot 0 & 12 \cdot -2 & 12 \cdot 3 \\ 12 \cdot 1 & 12 \cdot 0 & 12 \cdot 5 \end{bmatrix}$$

Matrix Addition

- You can add two matrices <u>only if they are</u> the exact same size.
- Let A and B both be m x n.

$$\begin{bmatrix} 0 & -3 & 2 \\ 5 & -4 & 6 \\ 1 & -1 & 2 \end{bmatrix} + \begin{bmatrix} -2 & 4 & 1 \\ 0 & 1 & 0 \\ 3 & 6 & -2 \end{bmatrix} = \begin{bmatrix} 0 + (-2) & -3 + 4 & 2 + 1 \\ 5 + 0 & -4 + 1 & 6 + 0 \\ 1 + 3 & -1 + 6 & 2 + (-2) \end{bmatrix}$$

What we've covered

- Matrix / matrix multiplication
- Matrix / matrix addition
- Matrix / number multiplication

What's Left?

- Matrix "division".
- Division is really just multiplication by an inverse.

$$\frac{5}{3} = \frac{1}{3} \cdot 5 = 3^{-1} \cdot 5$$

• You would call 1/3 the inverse of 3.

What is an inverse?

• The number you multiply by to get 1.

The Identity

 In regular algebra / arithmetic ,1 is referred to as the <u>identity</u>.

• Multiplying by it does not change anything.

$$z \cdot 1 = z$$

Identity Matrix

- We need to first define the concept of an identity matrix
- Define $\mathbb{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- Then for any matrix A that is the proper size $A \cdot \mathbb{I} = A = \mathbb{I} \cdot A$

Example

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 9 & -2 & 0 \\ -3 & 16 & 7 \\ 0 & 4 & -1 \end{bmatrix} = \begin{bmatrix} 9 & -2 & 0 \\ -3 & 16 & 7 \\ 0 & 4 & -1 \end{bmatrix}$$
$$\begin{bmatrix} 9 & -2 & 0 \\ -3 & 16 & 7 \\ 0 & 4 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 9 & -2 & 0 \\ -3 & 16 & 7 \\ 0 & 4 & -1 \end{bmatrix}$$

Identity Matrix

• The *identity matrix* is defined to be an n x n matrix that has ones on the diagonal and zeros everywhere else.

Matrix inverse

 Let A be a matrix. Then the <u>multiplicative inverse</u> of A is defined to be the matrix that satisfies

 $A^{-1} \cdot A = \mathbb{I} = A \cdot A^{-1}$

- Notice, A must be a square matrix, i.e. nxn.
 - If it is not, both multiplications are not defined.

What can we do with an inverse?

- Suppose you have a linear system posed as $A\cdot \vec{x} = \vec{b}$
- Then multiply both sides by the inverse $A^{-1} \cdot A \cdot \vec{x} = A^{-1} \cdot \vec{b}$

$$(A^{-1} \cdot A) \cdot \vec{x} = A^{-1} \cdot \vec{b}$$
$$(\mathbb{I}) \cdot \vec{x} = A^{-1} \cdot \vec{b}$$
$$\vec{x} = A^{-1} \cdot \vec{b}$$
Solution

Why is this useful?

- If you need to solve a system once, Gaussian Elimination is more efficient than this method.
- If you need to do so many times, this is more efficient.
 - You can precompute A^{-1} once, then multiply by it when needed.

How do we compute and Inverse?

- Let A be an nxn square matrix.
 - Form the augmented matrix $\begin{bmatrix} A & I \end{bmatrix}$
 - Then row reduce to

 $\left[\begin{array}{c|c} \mathbb{I} & A^{-1} \end{array} \right]$

Example

• Compute the inverse of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$ • Step I $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$ I $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 0 \end{bmatrix}$

Step 2

- Use <u>Gaussian Elimination</u> to row reduce the left side.
 - The right side is just along for the ride

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 2 & 5 & 3 & | & 0 & 1 & 0 \\ 1 & 0 & 8 & | & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & -3 & | & -2 & 1 & 0 \\ 0 & -2 & 5 & | & -1 & 0 & 1 \end{bmatrix}$$

-1 * RI $\begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & -3 & | & -2 & 1 & 0 \\ 0 & 0 & -1 & | & -5 & 2 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & -3 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & 5 & -2 & -1 \end{bmatrix}$

3*R3 + R2 ; -3*R3 + RI $\begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & -3 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & 5 & -2 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 0 & -14 & 6 & 3 \\ 0 & 1 & 0 & 13 & -5 & -3 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & 0 & | & -40 & 16 & 9 \\ 0 & 1 & 0 & | & 13 & -5 & -3 \\ 0 & 0 & 1 & | & 5 & -2 & -1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -40 & 16 & 9\\ 13 & -5 & -3\\ 5 & -2 & -1 \end{bmatrix}$$

• You can verify that $A^{-1} \cdot A = A \cdot A^{-1} = \mathbb{I}$

Recap

- Given an nxn matrix A
 - Step I: Form $\begin{bmatrix} A & I \end{bmatrix}$
 - Step 2 : Reduce the left side to <u>reduced</u> <u>row echelon form</u> $\begin{bmatrix} I & A^{-1} \end{bmatrix}$
 - Read off the inverse.

Caveats

- Not all matrices are invertible.
- A matrix must be square to be invertible.
- However, even some square matrices are not invertible.
 - If the matrix has no inverse, Gaussian Elimination will simply fail

- The left side cannot be turned into the identity!
- So this matrix is not invertible.