Lecture 5, 10/08/I2

William Holmes

Matrix Algebra

- Matrix / matrix multiplication
- Matrix / number multiplication
- Matrix / matrix addition and subtraction.
- Matrix division (maybe on Wed.)

Matrix Multiplication Continued

- Let A be $m_{1} \times n_{1}$ and B be $m_{2} \times n_{2}$.
- Then $A \cdot B$ only makes sense if $\mathrm{n}_{1}=\mathrm{m}_{2}$.
- The result is a matrix with dimensions m। $\times \mathrm{n}_{2}$

Matrix Multiplication

Matrix Multiplication

Matrix Multiplication

- Be careful. Matrix multiplication does not commute.

$$
A \cdot B \neq B \cdot A
$$

Matrix / Vector Formulation

 of a System$$
\begin{aligned}
{\left[\begin{array}{ccc}
2 & 1 & -1 \\
0 & -2 & 3 \\
1 & 0 & 5
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } & =\left[\begin{array}{c}
3 \\
-2 \\
16
\end{array}\right] \\
\downarrow & \downarrow \vec{x} \\
2 x_{1}+x_{2}-x_{3} & =3 \\
-2 x_{2}+3 x_{3} & =-2 \\
x_{1}+5 x_{3} & =16
\end{aligned}
$$

Notation and Conventions

$$
A \cdot \vec{x}=\vec{b}
$$

- A - is referred to as the coefficient matrix.
- $\vec{\square}$ - is a notation indicating a vector
- \vec{x} - is called the vector of unknowns
- \vec{b} - is called the constant vector

Matrix Algebra Continued

Matrix \Number Multiplication

$\# \cdot\left[\begin{array}{ccc}2 & 1 & -1 \\ 0 & -2 & 3 \\ 1 & 0 & 5\end{array}\right]=\left[\begin{array}{ccc}\# \cdot 2 & \# \cdot 1 & \# \cdot-1 \\ \# \cdot 0 & \# \cdot-2 & \# \cdot 3 \\ \# \cdot 1 & \# \cdot 0 & \# \cdot 5\end{array}\right]$

- Exactly what you would think it is.
- No restriction on dimension of matrix.

Example

$$
12 \cdot\left[\begin{array}{ccc}
2 & 1 & -1 \\
0 & -2 & 3 \\
1 & 0 & 5
\end{array}\right]=\left[\begin{array}{ccc}
12 \cdot 2 & 12 \cdot 1 & 12 \cdot-1 \\
12 \cdot 0 & 12 \cdot-2 & 12 \cdot 3 \\
12 \cdot 1 & 12 \cdot 0 & 12 \cdot 5
\end{array}\right]
$$

Matrix Addition

- You can add two matrices only if they are the exact same size.
- Let A and B both be $m \times n$.

$$
\left[\begin{array}{lll}
0 & -3 & 2 \\
5 & -4 & 6 \\
1 & -1 & 2
\end{array}\right]+\left[\begin{array}{ccc}
-2 & 4 & 1 \\
0 & 1 & 0 \\
3 & 6 & -2
\end{array}\right]=\left[\begin{array}{ccc}
0+(-2) & -3+4 & 2+1 \\
5+0 & -4+1 & 6+0 \\
1+3 & -1+6 & 2+(-2)
\end{array}\right]
$$

What we've covered

- Matrix / matrix multiplication
- Matrix / matrix addition
- Matrix / number multiplication

What's Left?

- Matrix"division".
- Division is really just multiplication by an inverse.

$$
\frac{5}{3}=\frac{1}{3} \cdot 5=3^{-1} \cdot 5
$$

- You would call I/3 the inverse of 3 .

What is an inverse?

- The number you multiply by to get I.

$$
\begin{aligned}
2^{-1} & =\frac{1}{2} \longrightarrow 2 \cdot \frac{1}{2}=1 \\
(-6)^{-1} & =\frac{1}{-6} \longrightarrow(-6) \cdot \frac{1}{-6}=1 \\
(\pi)^{-1} & =\frac{1}{\pi} \longrightarrow(\pi) \cdot \frac{1}{\pi}=1
\end{aligned}
$$

The Identity

- In regular algebra / arithmetic , 1 is referred to as the identity.
- Multiplying by it does not change anything.

$$
z \cdot 1=z
$$

Identity Matrix

- We need to first define the concept of an identity matrix
- Define

$$
\mathbb{I}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Then for any matrix A that is the proper size $A \cdot \mathbb{I}=A=\mathbb{I} \cdot A$

Example

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
9 & -2 & 0 \\
-3 & 16 & 7 \\
0 & 4 & -1
\end{array}\right]=\left[\begin{array}{ccc}
9 & -2 & 0 \\
-3 & 16 & 7 \\
0 & 4 & -1
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
9 & -2 & 0 \\
-3 & 16 & 7 \\
0 & 4 & -1
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
9 & -2 & 0 \\
-3 & 16 & 7 \\
0 & 4 & -1
\end{array}\right]}
\end{aligned}
$$

Identity Matrix

- The identity matrix is defined to be an $\mathrm{n} \times \mathrm{n}$ matrix that has ones on the diagonal and zeros everywhere else.

Matrix inverse

- Let A be a matrix. Then the multiplicative inverse of A is defined to be the matrix that satisfies

$$
A^{-1} \cdot A=\mathbb{I}=A \cdot A^{-1}
$$

- Notice, A must be a square matrix, i.e. nxn.
- If it is not, both multiplications are not defined.

What can we do with

 an inverse?

 an inverse?}

- Suppose you have a linear system posed as

$$
A \cdot \vec{x}=\vec{b}
$$

- Then multiply both sides by the inverse

$$
\begin{aligned}
A^{-1} \cdot A \cdot \vec{x} & =A^{-1} \cdot \vec{b} \\
\left(A^{-1} \cdot A\right) \cdot \vec{x} & =A^{-1} \cdot \vec{b} \\
(\mathbb{I}) \cdot \vec{x} & =A^{-1} \cdot \vec{b} \\
\vec{x} & =A^{-1} \cdot \vec{b} \text { Solution }
\end{aligned}
$$

Why is this useful?

- If you need to solve a system once, Gaussian Elimination is more efficient than this method.
- If you need to do so many times, this is more efficient.
- You can precompute A^{-1} once, then multiply by it when needed.

How do we compute and Inverse?

- Let A be an $n \times n$ square matrix.
- Form the augmented matrix $[A \mid \mathbb{I}]$
- Then row reduce to $\quad\left[\mathbb{I} \mid A^{-1}\right]$

Example

- Compute the inverse of $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8\end{array}\right]$
- Step I $\left[\begin{array}{lll|lll}1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 5 & 3 & 0 & 1 & 0 \\ 1 & 0 & 8 & 0 & 0 & 1\end{array}\right]$

Step 2

- Use Gaussian Elimination to row reduce the left side.
- The right side is just along for the ride

$$
\begin{aligned}
& {\left[\begin{array}{lll|lll}
1 & 2 & 3 & 1 & 0 & 0 \\
2 & 5 & 3 & 0 & 1 & 0 \\
1 & 0 & 8 & 0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll|lll}
1 & 2 & 3 & 1 & 0 & 0 \\
2 & 5 & 3 & 0 & 1 & 0 \\
1 & 0 & 8 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

Example Continued

- $-2 * \mathrm{RI}+\mathrm{R} 2 \quad ; \quad-2 * \mathrm{RI}+\mathrm{R} 3$

$$
\begin{gathered}
{\left[\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
2 & 5 & 3 & 0 & 1 & 0 \\
1 & 0 & 8 & 0 & 0 & 1
\end{array}\right]} \\
{\left[\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -3 & -2 & 1 & 0 \\
0 & -2 & 5 & -1 & 0 & 1
\end{array}\right]}
\end{gathered}
$$

Example Continued

$2 * R 2+R 3$

$$
\begin{gathered}
{\left[\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -3 & -2 & 1 & 0 \\
0 & -2 & 5 & -1 & 0 & 1
\end{array}\right]} \\
{\left[\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -3 & -2 & 1 & 0 \\
0 & 0 & -1 & -5 & 2 & 1
\end{array}\right]}
\end{gathered}
$$

Example Continued

$$
\begin{gathered}
\mathbf{- | * R I} \\
{\left[\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -3 & -2 & 1 & 0 \\
0 & 0 & -1 & -5 & 2 & 1
\end{array}\right]} \\
{\left[\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -3 & -2 & 1 & 0 \\
0 & 0 & 1 & 5 & -2 & -1
\end{array}\right]}
\end{gathered}
$$

Example Continued

$$
\begin{gathered}
\text { 3*R3 + R2 } \\
{\left[\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -3 & -2 & 1 & 0 \\
0 & 0 & 1 & 5 & -2 & -1
\end{array}\right]} \\
{\left[\begin{array}{ccc|ccc}
1 & 2 & 0 & -14 & 6 & 3 \\
0 & 1 & 0 & 13 & -5 & -3 \\
0 & 0 & 1 & 5 & -2 & -1
\end{array}\right]}
\end{gathered}
$$

Example Continued

- $\quad-2 * \mathrm{R} 2+\mathrm{RI}$

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
1 & 2 & 0 & -14 & 6 & 3 \\
0 & 1 & 0 & 13 & -5 & -3 \\
0 & 0 & 1 & 5 & -2 & -1
\end{array}\right]} \\
& {\left[\begin{array}{lll|ccc}
1 & 0 & 0 & -40 & 16 & 9 \\
0 & 1 & 0 & 13 & -5 & -3 \\
0 & 0 & 1 & 5 & -2 & -1
\end{array}\right]}
\end{aligned}
$$

Example Continued

$$
\begin{aligned}
& {\left[\begin{array}{lll|lll}
1 & \mathbb{I} & 0 & -40 & A^{-1} \\
0 & 1 & 0 & 13 & 9 \\
0 & 0 & 1 & -5 & -3 \\
5 & -2 & -1
\end{array}\right]} \\
& A^{-1}=\left[\begin{array}{ccc}
-40 & 16 & 9 \\
13 & -5 & -3 \\
5 & -2 & -1
\end{array}\right]
\end{aligned}
$$

- You can verify that $A^{-1} \cdot A=A \cdot A^{-1}=\mathbb{I}$

Recap

- Given an nxn matrix A
- Step I: Form $[A \mid \mathbb{I}]$
- Step 2 : Reduce the left side to reduced row echelon form $\left[\mathbb{I} \mid A^{-1}\right]$
- Read off the inverse.

Caveats

- Not all matrices are invertible.
- A matrix must be square to be invertible.
- However, even some square matrices are not invertible.
- If the matrix has no inverse, Gaussian Elimination will simply fail

Example

$$
\left.\begin{array}{l}
{\left[\begin{array}{ccc|ccc}
1 & 6 & 4 & 1 & 0 & 0 \\
2 & 4 & -1 & 0 & 1 & 0 \\
-1 & 2 & 5 & 0 & 0 & 1
\end{array}\right]} \\
\downarrow \downarrow
\end{array} \begin{array}{ccc|ccc}
1 & 6 & 4 & 1 & 0 & 0 \\
0 & -8 & -9 & -2 & 1 & 0 \\
0 & 0 & 0 & -1 & 1 & 1
\end{array}\right] .
$$

- The left side cannot be turned into the identity!
- So this matrix is not invertible.

